

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

PAGE NOT FOUND

Sorry, the page you requested does not exist.

	User Guide

	 Home

	<i class="fas fa-list"></i> Modules List

	<i class="fas fa-table"></i> Attributes

	<i class="fas fa-caret-square-right"></i> Context Actions

	<i class="fas fa-cube"></i> Compositions

	<i class="fas fa-warehouse"></i> Vehicle Garage

	<i class="fas fa-map-marked"></i> Area Markers

	Frameworks

	<i class="fas fa-bars"></i> Context Menu

	<i class="fas fa-cog"></i> Custom Modules

	<i class="far fa-window-restore"></i> Dynamic Dialog

	<i class="fas fa-chevron-circle-down"></i> Custom Waypoints

	<i class="fas fa-broadcast-tower"></i> Public Events

	Development

	<i class="fas fa-code"></i> Coding Guidelines

Zeus Enhanced

Zeus Enhanced, also known as ZEN, is an Arma 3 mod aimed at improving and expanding the functionality of the Zeus real-time editor.

Zeus Enhanced is built with communities who use Zeus as their primary mission making tool in mind by enabling curators with powerful tools to create dynamic scenarios in an efficient manner.

This mod is built using the same foundation and design standards as the ACE3 Project.
Special thanks to the ACE3 Team [http://ace3mod.com/team.html] for their open source nature and permission to use their systems, without their work this would not be possible.

Features {docsify-ignore}

	A lot of powerful new modules, as well as improved vanilla modules.

	Completely rewritten attributes system available for all objects.

	Context menu that provides quick access to common Zeus actions.

	Ability to create custom compositions through Zeus.

	Settings to customize the Zeus display (move display to edge, remove watermark, etc.).

	Ability to disable live search to reduce lag when searching through a lot of items.

	Overhauled markers tree with markers sorted into categories.

	Rewritten, faster remote controlling of units.

	3DEN editor object preview images in Zeus.

	Ability to create and edit area markers through Zeus.

	Player visibility indicator to help ensure mission adjustments are not made in view of players.

	Placement preview that enables precise object placement on surfaces.

	Vehicle customization garage made specifically for Zeus.

	Various bug fixes and quality of life improvements to the Zeus interface.

	Settings to control Zeus camera properties such as speed and available vision modes.

	Zeus camera flashlight for easier editing at night.

	New waypoint types such as paradrop available through Zeus.

Coding Guidelines

1. Naming Conventions

1.1 Variable Names

1.1.1 Private Variable Naming

To improve the readability of code, try to use self-explanatory variable names and avoid using single-character variable names.

Example: _velocity instead of _v

1.1.2 Global Variable Naming

All global variables must start with the ZEN prefix followed by the component, separated by underscores. Global variables may not contain the fnc_ prefix if the value is not callable code.

Example: zen_component_variableName

For ZEN this is done automatically through the use of the GVAR macro family.

1.1.3 Function Naming

All functions shall use ZEN and the component name as a prefix, as well as the fnc_ prefix behind the component name.

Example: zen_component_fnc_functionName

For ZEN this is done automatically through the usage of the PREP macro.

1.2 Files & Config

1.2.1 SQF Files

Files containing SQF scripts shall have a file name extension of .sqf.

1.2.2 Header Files

All header files shall have the file name extension of .hpp.

1.2.3 Own SQF File

All functions shall be put in their own .sqf file.

1.2.4 Config Elements

Config files shall be split up into different header files, each with the name of the config and be included in the config.cpp of the component.

Example:

#include "CfgVehicles.hpp"

And in CfgVehicles.hpp:

class CfgVehicles {
 // Content
};

1.2.5 Addon Template

An addon template is available at the extras/blank [https://github.com/zen-mod/ZEN/tree/master/extras/blank] repo directory.

1.3 Stringtable

All text that shall be displayed to a user shall be defined in a stringtable.xml file for multi-language support.

	There shall be no empty stringtable language values.

	All stringtables shall follow the format as specified by Tabler [https://github.com/bux/tabler] and the translation guidelines [http://ace3mod.com/wiki/development/how-to-translate-ace3.html] form.

2. Macro Usage

2.1 Component/PBO Specific Macro Usage

The family of GVAR macros define global variable strings or constants for use within a component. Please use these to make sure we follow naming conventions across all components and also prevent duplicate/overwriting between variables in different components. The macro family expands as follows, for the example of the component ‘balls’:

Macro | Expands To
—– | ———-
GVAR(face) | zen_balls_face
QGVAR(face) | "zen_balls_face"
QQGVAR(face) | ""zen_balls_face"" used inside QUOTE macros where double quotation is required.
EGVAR(leg,face) | zen_leg_face
QEGVAR(leg,face) | "zen_leg_face"
QQEGVAR(leg,face) | ""zen_leg_face"" used inside QUOTE macros where double quotation is required.

There also exists the FUNC family of Macros:

Macro | Expands To
—– | ———-
FUNC(face) | zen_balls_fnc_face
EFUNC(leg,face) | zen_leg_fnc_face
LINKFUNC(face) | FUNC(face) or “pass by reference” {_this call FUNC(face)}
QFUNC(face) | "zen_balls_fnc_face"
QEFUNC(leg,face) | "zen_leg_fnc_face"
QQFUNC(face) | ""zen_balls_fnc_face"" used inside QUOTE macros where double quotation is required.
QQEFUNC(leg,face) | ""zen_leg_fnc_face"" used inside QUOTE macros where double quotation is required.

The LINKFUNC macro allows for the recompiling of a function used in event handler code when function caching is disabled. Example: player addEventHandler ["Fired", LINKFUNC(firedEH)]; will run updated code after each recompile.

2.2 General Purpose Macros

CBA script_macros_common.hpp [https://github.com/CBATeam/CBA_A3/blob/master/addons/main/script_macros_common.hpp]

QUOTE() is utilized within configuration files for bypassing the quote issues in configuration macros. So, all code segments inside a given config should utilize wrapping in the QUOTE() macro instead of direct strings. This allows us to use our macros inside the string segments, such as QUOTE(_this call FUNC(balls))

2.2.1 setVariable, getVariable Family Macros

These macros are allowed but are not enforced.

Macro | Expands To
—– | ———-
GETVAR(player,MyVarName,false) | player getVariable ["MyVarName", false]
GETMVAR(MyVarName,objNull) | missionNamespace getVariable ["MyVarName", objNull]
GETUVAR(MyVarName,displayNull) | uiNamespace getVariable ["MyVarName", displayNull]
SETVAR(player,MyVarName,127) | player setVariable ["MyVarName", 127]
SETPVAR(player,MyVarName,127) | player setVariable ["MyVarName", 127, true]
SETMVAR(MyVarName,player) | missionNamespace setVariable ["MyVarName", player]
SETUVAR(MyVarName,_control) | uiNamespace setVariable ["MyVarName", _control]

2.2.2 STRING Family Macros

Requires that the strings be defined in the component’s stringtable.xml is the correct format: STR_ZEN_<component>_<string>

Example: STR_ZEN_Balls_Banana

Script strings (still require localize to localize the string):

Macro | Expands To
—– | ———-
LSTRING(banana) | "STR_ZEN_balls_banana" |
ELSTRING(leg,banana) | "STR_ZEN_leg_banana" |

Config Strings (require $ as first character):

Macro | Expands To
—– | ———-
CSTRING(banana) | "$STR_ZEN_balls_banana" |
ECSTRING(leg,banana) | "$STR_ZEN_leg_banana" |

2.2.3 Path Family Macros

The family of path macros define global paths to files for use within a component. Please use these to reference files in the ZEN project. The macro family expands as follows, for the example of the component ‘balls’:

Macro | Expands To
—– | ———-
PATHTOF(data\banana.p3d) | \x\zen\addons\balls\data\banana.p3d
QPATHTOF(data\banana.p3d) | "\x\zen\addons\balls\data\banana.p3d"
PATHTOEF(leg,data\banana.p3d) | \x\zen\addons\leg\data\banana.p3d
QPATHTOEF(leg,data\banana.p3d) | "\x\zen\addons\leg\data\banana.p3d"

3. Functions

Functions shall be created in the functions\ subdirectory and named fnc_functionName.sqf. They shall then be indexed via the PREP(functionName) macro in the component’s XEH_PREP.hpp file.

The PREP macro allows for CBA function caching, which drastically speeds up load times.

!> Beware though that function caching is enabled by default and as such to disable it you need to uncomment #define DISABLE_COMPILE_CACHE in the component’s script_component.hpp file.

3.1 Headers

Every function should have a header with the following format at the start of their function file. This is not necessary for inline functions or functions not contained in their own file.

/*
 * Author: [Name of Author(s)]
 * [Description]
 *
 * Arguments:
 * 0: First Argument <STRING>
 * 1: Second Argument <OBJECT>
 * 2: Multiple Input Types <STRING|ARRAY|CODE>
 * 3: Optional Argument <BOOL> (default: true)
 * 4: Unused Argument (not used) <NUMBER>
 *
 * Return Value:
 * Return Value <BOOL>
 *
 * Example:
 * ["example", player] call zen_common_fnc_example
 *
 * Public: [Yes/No]
 */

A return value of “None” should be used when the functions returns nil or its return value has no meaning.

3.2 Includes

Every function should include the script_component.hpp file at the start, above the function header. Any additional includes must be below this include. Any defines should be below the function header.

All code must be written below the aforementioned items.

3.2.1 Reasoning

This ensures every function starts of in a uniform manner and enforces function documentation.

4. Global Variables

All global variables should be defined in the XEH_preInit.sqf file of the component they will be used in with an initial default value.

Exceptions:

	Dynamically generated global variables.

	Variables that do not originate from the ZEN project, such as BI global variables or third party such as CBA.

5. Code Style

To help you follow the coding style we recommend you get the EditorConfig [http://editorconfig.org/#download] plugin for your editor. It will help with correcting indentations and deleting trailing spaces.

5.1 Braces Placement

Braces { } which enclose a code block will have the first bracket placed behind the statement in case of if, switch statements or while, waitUntil and for loops. The second brace will be placed on the same column as the statement but on a separate line.

	Opening brace on the same line as keyword.

	Closing brace on own line, same level of indentation as keyword.

Good:

class Something: Or {
 class Other {
 foo = "bar";
 };
};

Bad:

class Something : Or
{
 class Other
 {
 foo = "bar";
 };
};

Bad:

class Something : Or {
 class Other {
 foo = "bar";
 };
 };

When using if/else, the else must be on the same line as the closing brace:

if (alive player) then {
 player setDamage 1;
} else {
 hint ":(";
};

In cases where there are a lot of one-liner classes, something like this is allowed to save space:

class One {foo = 1};
class Two {foo = 2};
class Three {foo = 3};

5.1.1 Reasoning

Putting the opening brace in its own line wastes a lot of space, and keeping the closing brace on the same level as the keyword makes it easier to recognize what exactly the brace closes.

5.2 Indentation

Every new scope should be on a new indent. This will make the code easier to understand and read. Indentations consist of 4 spaces. Tabs are not allowed. Tabs or spaces are not allowed to trail on a line, last character needs to be non blank.

Good:

call {
 call {
 if (/* condition */) then {
 /* code */
 };
 };
};

Bad:

call {
 call {
 if (/* condition */) then {
 /* code */
 };
 };
};

5.3 Inline Comments

Inline comments should use //. Usage of /* */ is allowed for larger comment blocks.

Example:

//// Comment // < incorrect
// Comment // < correct
/* Comment */ // < correct

5.4 Comments In Code

All code shall be documented by comments that describe what is being done. This can be done through the function header and/or inline comments.

Comments within the code shall be used when they are describing a complex and critical section of code or if the subject code does something a certain way because of a specific reason. Unnecessary comments in the code are not allowed.

Good:

// find the object with the most blood loss
_highestObj = objNull;
_highestLoss = -1;
{
 if ([_x] call EFUNC(medical,getBloodLoss) > _highestLoss) then {
 _highestLoss = [_x] call EFUNC(medical,getbloodloss);
 _highestObj = _x;
 };
} foreach _units;

Good:

// Check if the unit is an engineer
(_obj getvariable [QGVAR(engineerSkill), 0] >= 1);

Bad:

// Get the engineer skill and check if it is above 1
(_obj getvariable [QGVAR(engineerSkill), 0] >= 1);

Bad:

// Get the variable myValue from the object
_myValue = _obj getvariable [QGVAR(myValue), 0];

Bad:

// Loop through all units to increase the myvalue variable
{
 _x setvariable [QGVAR(myValue), (_x getvariable [QGVAR(myValue), 0]) + 1];
} forEach _units;

5.5 Parentheses Around Code

When making use of parentheses (), use as few as possible, unless doing so decreases readability of the code.

Avoid statements such as:

if (!(_value)) then {};

The following is allowed, but unnecessary:

_value = (_array select 0) select 1;

Any conditions in statements shall always be wrapped around brackets.

if (!_value) then {};
if (_value) then {};

5.6 Magic Numbers

There shall be no magic numbers. Any magic number shall be put in a define either on top of the .sqf file (below the header), or in the script_component.hpp file in the root directory of the component (recommended) in case it is used in multiple locations.

Magic numbers are any of the following:

	A constant numerical or text value used to identify a file format or protocol.

	Distinctive unique values that are unlikely to be mistaken for other meanings.

	Unique values with unexplained meaning or multiple occurrences which could (preferably) be replaced with named constants.

Source [http://en.wikipedia.org/wiki/Magic_number_%28programming%29]

5.7 Command Names

Command names will be written with the proper capitalization. For example, addEventHandler is good whereas addeventhandler is not allowed.

6. Code Standards

6.1 Error Testing

If a function returns error information, then that error information will be tested.

6.2 Unreachable Code

There shall be no unreachable code.

6.3 Function Parameters

Parameters of functions must be retrieved through the usage of the param or params commands. If the function is part of the public API, parameters must be checked on allowed data types and values through the usage of the param and params commands.

Usage of the CBA Macro PARAM_x or function BIS_fnc_param is not allowed within the ZEN project.

6.4 Return Values

Functions and code blocks that specify a return a value must have a meaningful return value. If there is no meaningful return value, the function should return nil.

6.5 Private Variables

All private variables shall make use of the private keyword on initialization. When declaring a private variable before initialization, usage of the private ARRAY syntax is allowed. All private variables must be either initialized using the private keyword, or declared using the private ARRAY syntax.

Exceptions to this rule are variables obtained from an array, which shall be done with usage of the params command family, which ensures the variable is declared as private.

Good:

private _myVariable = "hello world";

Good:

_myArray params ["_elementOne", "_elementTwo"];

Bad:

_elementOne = _myArray select 0;
_elementTwo = _myArray select 1;

6.6 Lines of Code

Any one function shall contain no more than 250 lines of code, excluding the function header and any includes.

6.7 Variable Declarations

Declarations should be at the smallest feasible scope.

Good:

if (call FUNC(myCondition)) then {
 private _areAllAboveTen = true; // <- smallest feasable scope

 {
 if (_x >= 10) then {
 _areAllAboveTen = false;
 };
 } forEach _anArray;

 if (_areAllAboveTen) then {
 hint "all values are above ten!";
 };
}

Bad:

private _areAllAboveTen = true; // <- this is bad, because it can be initialized in the if statement
if (call FUNC(myCondition)) then {
 {
 if (_x >= 10) then {
 _areAllAboveTen = false;
 };
 } forEach _anArray;

 if (_areAllAboveTen) then {
 hint "all values are above ten!";
 };
};

6.8 Variable Initialization

Private variables will not be introduced until they can be initialized with meaningful values.

Good:

private _myVariable = 0; // good because the value will be used
{
 _x params ["_value", "_amount"];
 if (_value > 0) then {
 _myVariable = _myVariable + _amount;
 };
} forEach _array;

Good:

private _myVariable = [1, 2] select _condition;

Bad:

private _myVariable = 0; // Bad because it is initialized with a zero, but this value does not mean anything
if (_condition) then {
 _myVariable = 1;
} else {
 _myVariable = 2;
};

6.9 Initialization Expression in for Loops

The initialization expression in a for loop shall perform no actions other than to initialize the value of a single for loop parameter.

6.10 Increment Expression in for Loops

The increment expression in a for loop shall perform no action other than to change a single loop parameter to the next value for the loop.

6.11 getVariable

When using getVariable, there shall either be a default value given in the statement or the return value shall be checked for correct data type(s) as well as return value. A default value may not be given after a nil check.

Bad:

_return = _object getVariable "varName";
if (isNil "_return") then {_return = 0};

Good:

_return = _object getVariable ["varName", 0];

Good:

_return = _object getVariable "varName";
if (isNil "_return") exitWith {};

6.12 Global Variables

Global variables should not be used to pass along information from one function to another. Use arguments instead.

Bad:

fnc_example = {
 hint GVAR(myVariable);
};

GVAR(myVariable) = "hello my variable";
call fnc_example;

Good:

fnc_example = {
 params ["_content"];
 hint _content;
};

["hello my variable"] call fnc_example;

6.13 Temporary Objects & Variables

Unnecessary temporary objects or variables should be avoided.

6.14 Commented Out Code

Code that is not used (commented out) shall be deleted.

6.15 Constant Global Variables

There shall be no constant global variables, constants shall be put in a #define.

6.16 Constant Private Variables

Constant private variables that are used more as once shall be put in a #define.

6.17 Logging

Functions shall whenever possible and logical, make use of logging functionality through the logging and debugging macros from CBA.

6.18 Code Used More than Once

Any code that could/is used more than once, shall be put in a separate .sqf file and made a function, unless this code is less as 5 lines and used only in a per-frame handler.

7. Design considerations

7.1 Readability vs Performance

This is a large open source project that will get many different maintainers in its lifespan. When writing code, keep in mind that other developers also need to be able to understand your code. Balancing readability and performance of code is not a black and white subject. The rule of thumb is:

	When improving performance of code that sacrifices readability (or visa-versa), first see if the design of the implementation is done in the best way possible.

	Document that change with the reasoning in the code.

7.2 Scheduled vs Unscheduled

Avoid the usage of scheduled space as much as possible and stay in unscheduled. This is to provide a smooth experience to the user by guaranteeing code to run when we want it.

This also helps avoid various bugs as a result of unguaranteed execution sequences when running multiple scripts.

7.3 Event Driven

All ZEN components shall be implemented in an event driven fashion. This is done to ensure code only runs when it is required and allows for modularity through low coupling components.

Event handlers in ZEN are implemented through the CBA Event System. They should be used to trigger or allow triggering of specific functionality.

More information on the CBA Events System [https://github.com/CBATeam/CBA_A3/wiki/Custom-Events-System] and CBA Player Events [https://github.com/CBATeam/CBA_A3/wiki/Player-Events] pages.

7.3.1 BI Event Handlers

BI’s event handlers (addEventHandler, addMissionEventHandler, displayAddEventHandler, ctrlAddEventHandler) are slow when passing a large code variable. Use a short code block that calls the function you want.

addMissionEventHandler ["Draw3D", FUNC(onDraw3D)]; // Bad
addMissionEventHandler ["Draw3D", {call FUNC(onDraw3D)}]; // Good

7.4 Hashes

When a key value pair is required, make use of the hash implementation from CBA.

Hashes are a variable type that store key value pairs. They are not implemented natively in SQF, so there are a number of functions provided by CBA for their usage in ZEN. If you are unfamiliar with the idea, they are similar in function to setVariable/getVariable but do not require an object to use.

Hashes are implemented with SQF arrays, and as such they are passed by reference to other functions. Remember to make copies (using the + operator) if you intend for the hash to be modified without changing the original value.

8. Performance Considerations

8.1 Adding Elements to Arrays

When adding new elements to an array, pushBack shall be used instead of the binary addition or set. When adding multiple elements to an array append may be used instead.

Good:

_a pushBack _value;

Good:

_a append [1,2,3];

Bad:

_a set [count _a, _value];
_a = _a + [_value];

When adding an new element to a dynamic location in an array or when the index is pre-calculated, set may be used.

When adding multiple elements to an array, the binary addition may be used for the entire addition.

8.2 createVehicle

createVehicle array shall be used.

8.3 createVehicle(Local) Position

createVehicle(Local) used with a non-[0, 0, 0] position performs search for empty space to prevent collisions on spawn.
Where possible [0, 0, 0] position shall be used, except on # objects (e.g. #lightsource, #soundsource) where empty position search is not performed.

This code requires ~1.00ms and will be higher with more objects near wanted position:

_vehicle = _type createVehicleLocal _posATL;
_vehicle setposATL _posATL;

While this one requires ~0.04ms:

_vehicle = _type createVehicleLocal [0, 0, 0];
_vehicle setposATL _posATL;

8.4 Unscheduled vs Scheduled

All code that has a visible effect for the user or requires time specific guaranteed execution shall run in the unscheduled environment.

8.5 Avoid spawn & execVM

execVM and spawn are to be avoided wherever possible.

8.6 Empty Arrays

When checking if an array is empty isEqualTo shall be used.

8.7 for Loops

for "_y" from # to # step # do { ... }

shall be used instead of

for [{ ... }, { ... }, { ... }] do { ... };

whenever possible.

8.8 while Loops

While is only allowed when used to perform a unknown finite amount of steps with unknown or variable increments. Infinite while loops are not allowed.

Good:

_original = _object getvariable [QGVAR(value), 0];

while {_original < _weaponThreshold} do {
 _original = [_original, _weaponClass] call FUNC(getNewValue);
}

Bad:

while {true} do {
 // anything
};

8.9 waitUntil

The waitUntil command shall not be used. Instead, make use of CBA’s CBA_fnc_waitUntilAndExecute

[{
 params ["_unit"];
 _unit getVariable [QGVAR(myVariable), false];
}, {
 params ["_unit"];
 // Execute any code
}, [_unit]] call CBA_fnc_waitUntilAndExecute;

Context Menu

The ZEN context menu framework provides convenient, intuitive access to common Zeus actions such as remote controlling or opening the arsenal on a unit.

Adding Actions Through Config

Context menu actions are added as subclasses to the zen_context_menu_actions root config class.
Children actions are also added as subclasses.

Actions can be added to both the global config configFile and the mission config missionConfigFile.
Mission config actions can add to action paths that exist from the global config.

Config Entries:

Name | Type | Description
—- | —- | ———–
displayName | STRING | Name of the action
icon | STRING | Icon file path
iconColor | ARRAY | Icon color RGBA
statement | STRING | Code called when action is clicked
condition | STRING | Condition code required to show action
priority | NUMBER | Action sorting priority
insertChildren | STRING | Code to dynamically add children actions
modifierFunction | STRING | Code to modify the action before condition checking
args | ANY | Arguments passed to the action

Example:

class zen_context_menu_actions {
 class HintName {
 displayName = "Hint Name";
 icon = "\folder\icon_name.paa";
 statement = "hint str name player";
 priority = 50;
 };
};

Adding Actions Through Script

Requires v1.4.0 or later.

Creating an Action

Context menu actions can be added by first creating an action with the zen_context_menu_fnc_createAction function.
This function is used to ensure that the created action array is in the correct format.

Arguments:

| Description | Type | Default Value (if optional)
:—: | ———– | —- | —————————
0 | Action Name | STRING |
1 | Display Name | STRING |
2 | Icon and Icon Color | STRING or ARRAY | ["", [1, 1, 1, 1]]
3 | Statement | CODE |
4 | Condition | CODE | {true}
5 | Arguments | ANY | []
6 | Dynamic Children | CODE | {}
7 | Modifier Function | CODE | {}

Return Value:

	Action <ARRAY>

Example:

private _action = [
 "HintTime",
 "Hint Time",
 "\a3\ui_f\data\igui\rsctitles\mpprogress\timer_ca.paa",
 {hint format ["Time - %1", [daytime] call BIS_fnc_timeToString]}
] call zen_context_menu_fnc_createAction

Adding the Created Action

The created action can be added using the zen_context_menu_fnc_addAction function.
Using the an empty parent path adds the action to the root level.
Actions are added locally and as a result the function must be executed on each client in order to have global effects.

Arguments:

| Description | Type | Default Value (if optional)
:—: | ———– | —- | —————————
0 | Action | ARRAY
1 | Parent Path | ARRAY | []
2 | Priority | NUMBER | 0

Return Value:

	Full Action Path <ARRAY>

Example:

[_action, [], 0] call zen_context_menu_fnc_addAction

Removing Actions Through Script

Requires v1.6.0 or later.

Context menu actions can be removed using the zen_context_menu_fnc_removeAction function with the full action path.

Arguments:

| Description | Type | Default Value (if optional)
:—: | ———– | —- | —————————
0 | Action Path | ARRAY

Return Value:

	Removed <BOOL>

Example:

["HintTime"] call zen_context_menu_fnc_removeAction

Statement and Condition

The statement and condition code blocks are both executed in the unscheduled environment.
The condition code must return a BOOL indicating whether the action should be shown.

Actions that have an empty statement and no active children are not shown.
This removes the need to duplicate condition checks for actions that are only there to categorize others.

Passed Parameters:

	The variable column references the name of the local scope variable corresponding to the given parameter (for easy access, especially in configs).

	Context position is taken from the top-left corner of the menu, in format ASL.

	Hovered entity is the Zeus entity being hovered when the menu was opened. It is also included in its corresponding selected array. objNull if nothing was hovered.

	Arguments is the custom argument(s) given to the action when it was created.

| Description | Type | Variable
:—: | ———– | —- | ——–
0 | Context Position | ARRAY | _position
1 | Selected Objects | ARRAY | _objects
2 | Selected Groups | ARRAY | _groups
3 | Selected Waypoints | ARRAY | _waypoints
4 | Selected Markers | ARRAY | _markers
5 | Hovered Entity | OBJECT, GROUP,
ARRAY, or STRING | _hoveredEntity
6 | Arguments | ANY | _args

Dynamic Children Actions

Dynamic children actions can be added to an action by returning an array of actions from the insert children code.
The same parameters that are available to the statement and condition are also available here.

Each action in the returned actions must be an array with the following format:

	0: Action (created using zen_context_menu_fnc_createAction) <ARRAY>

	1: Array of Children Actions <ARRAY>

	2: Priority <NUMBER>

These actions are sorted based on priority with all of the children of the action and undergo the same condition checking to be shown.

Modifier Function

The modifier function can be used to dynamically modify the properties of action, such as its name based on the hovered entity.
This is called before any other handling involving the action (condition checking, dynamic children creation) occurs.

Passed Parameters:

	0: Action (to modify by reference) <ARRAY>

	1: Parameters (same as statement and condition) <ARRAY>

The action is modified by changing the action array by reference.
Each time the modifier function is called, it receives a new copy of the original action (without any previous modifications).

Custom Modules

The ZEN custom modules framework allows addon and mission makers to add their own modules to the Zeus interface through script.

!> A maximum of 100 custom modules can be added.

Registering A Module

A new module can be added by calling the zen_custom_modules_fnc_register function.
Modules are added locally and as a result the function must be executed on each client in order to have global effects.

Arguments:

| Description | Type | Default Value (if optional)
:—: | ———– | —- | —————————
0 | Category | STRING |
1 | Module Name | STRING |
2 | Function | CODE |
3 | Icon File | STRING | "\a3\modules_f\data\portraitmodule_ca.paa"

Return Value:

	Successfully Registered <BOOL>

Example:

["Custom Modules", "Cool Hint", {hint str _this}] call zen_custom_modules_fnc_register

Module Function

The module function is executed in the unscheduled environment on the client that placed the module.

Passed Parameters:

| Description | Type | Notes
:—: | ———– | —- | —–
0 | Module Position | ARRAY | In ASL format
1 | Attached Object | OBJECT | objNull if not attached

Custom Waypoints

The ZEN custom waypoints framework allows addon makers to easily make their waypoints available in the Zeus interface.

Adding Waypoints

Waypoints are added as subclasses to the ZEN_WaypointTypes root config class.

Config Entries:

Name | Type | Description
—- | —- | ———–
displayName | STRING | Displayed name of the waypoint
type | STRING | Waypoint type, reference [https://community.bistudio.com/wiki/Waypoint_types]
script | STRING | Path to waypoint script file, used when type is “SCRIPTED”

Example

class ZEN_WaypointTypes {
 class Paradrop {
 displayName = "Paradrop";
 type = "SCRIPTED";
 script = "\x\zen\addons\ai\functions\fnc_waypointParadrop.sqf";
 };
};

Dynamic Dialog

The ZEN dynamic dialog framework provides a straightforward way to create simple, but powerful dialogs.

The dynamic dialog framework implements a saved values system which will restore the user’s last confirmed selections and restore them when the dialog is opened again. This behavior can be turned off on a control specific basis by setting the “Force Default” argument in the content controls to true.

All STRING arguments can be stringtable entries which will be automatically localized.

Creating A Dialog

The heart of the framework is the zen_dialog_fnc_create function, the arguments of which detail the structure and actions of the dialog.

Arguments:

| Description | Type | Default Value (if optional)
:—: | ———– | —- | —————————
0 | Title | STRING |
1 | Content | ARRAY |
2 | On Confirm | CODE |
3 | On Cancel | CODE | {}
4 | Arguments | ANY | []

Return Value:

	Dialog Created <BOOL>

Content Controls

The “Content” argument specifies the various controls the make up the dialog, in the order they appear.

Each content control is defined in a sub-array in the content array with the same arguments except for the control specific arguments. Here is a break down of the sub-array:

| Description | Type | Default Value (if optional)
:—: | ———– | —- | —————————
0 | Control Type | STRING |
1 | Display Name and Tooltip | STRING or ARRAY
2 | Control Specific Argument(s) | — |
3 | Force Default | BOOL | false

The control specific arguments(s) for the 8 currently available control types are detailed below. The return value is the value returned by this control type in the dialog values array (detailed further below).

Checkbox CHECKBOX

A simple checkbox control.

Control Specific Argument(s):

	Default checked state <BOOL>

Return Value:

	Checked <BOOL>

Color COLOR

A color picker control supporting both RGB and RGBA colors. The color picker type depends on the length of the default color array (3 or 4 with values between 0 and 1; standard Arma color format).

Control Specific Argument(s):

	Default color <ARRAY>

Return Value:

	Color <ARRAY>

Combo Box COMBO

A combo box control with support for detailing specific entries.

Control Specific Argument(s):

	0: Values that can be returned <ARRAY>

	1: Corresponding pretty names (see below) <ARRAY>

	2: Default index <NUMBER>

Pretty Names:

The corresponding pretty names array can have elements in the following format, only the display name is required.

	0: Display name <STRING>

	1: Tooltip <STRING>

	2: Picture <STRING>

	3: Text color RGBA <ARRAY>

Return Value:

	Value <ANY>

Edit Box EDIT

A single line edit box with support for an optional sanitizing function.
The function is called on every key press with the full text as an argument and its return value is the resulting text.

Two multi-line edit box sub-types exist for this control type, EDIT:MULTI and EDIT:CODE.
When either sub-type is used, an additional height argument can be supplied to change how tall the edit box is.
The code sub-type provides scripting autocompletion to the user.

Control Specific Argument(s):

	0: Default text <STRING>

	1: Sanitizing function <CODE>

	2: Height (only for multi-line types) <NUMBER>

Return Value:

	Text <STRING>

List Box LIST

A list box control with support for detailing specific entries.
This control type works identically to the combo box control type except for the format in which the entries are presented (list view rather than a drop down).
In addition, this control type accepts an additional height argument to change how tall the list box is.

Control Specific Argument(s):

	0: Values that can be returned <ARRAY>

	1: Corresponding pretty names (see above) <ARRAY>

	2: Default index <NUMBER>

	3: Height <NUMBER>

Return Value:

	Value <ANY>

Owners OWNERS

An owners control that allows for the selection of multiple sides, groups with players, or players.
Each selection type is separated into individual tabs, with the groups and players tabs implementing search bar.

The subtype - OWNERS:NOTITLE is a slightly taller variant with no title, the display name and tooltip arguments are ignored.

Control Specific Argument(s):

	0: Selected sides <ARRAY>

	1: Selected groups <ARRAY>

	2: Selected players <ARRAY>

	3: Default Tab <NUMBER>

	0 - Sides, 1 - Groups, 2 - Players

Return Value:

	Selections <ARRAY>

	In same format as control specific arguments.

Side Select SIDES

A side selection control with clickable icons for the BLUFOR, OPFOR, Independent, and Civilian sides.

Control Specific Argument(s):

	Default side <SIDE>

Return Value:

	Side <SIDE>

Slider SLIDER

A slider control with an attached edit box which can both be used to change the value.

A percentage slider sub-type exists for this control type - SLIDER:PERCENT.
When this sub-type is used, the value displayed in the edit box will be multiplied by 100 and be suffixed by a percent sign.
The returned value will still be within the min and max values (ideally 0 to 1) and the formatting argument is ignored.

Control Specific Argument(s):

	0: Minimum value <NUMBER>

	1: Maximum value <NUMBER>

	2: Default value <NUMBER>

	3: Formatting <NUMBER|CODE>

	Number specifies the number of displayed decimal places (0, 1, or 2).

	Code specifies custom formatting which is passed the value in _this and must return a string.

Return Value:

	Value <NUMBER>

Toolbox TOOLBOX

A toolbox selection control with support for any number of rows and columns.
The subtype - TOOLBOX:WIDE is a wider variant that works better with a large number of columns.

Two additional sub-types exist for this control type, mostly for QOL - TOOLBOX:YESNO and TOOLBOX:ENABLED.
When either sub-type is used, only the default value needs to be specified.

The return value type depends on the given default value:

	BOOL type is only available for toolbox controls with 2 options

	NUMBER type represents the index of the default option

Control Specific Argument(s):

	0: Default value <BOOL|NUMBER>

	1: Number of rows <NUMBER>

	2: Number of columns <NUMBER>

	3: Option names <ARRAY>

	4: Height <NUMBER>

	Optional, will be calculated from the number of rows when unspecified.

Return Value:

	Value <BOOL|NUMBER>

Vector VECTOR

A vector input control with support for both XY and XYZ vectors.
The number of axes displayed depends on the length of the default value array (2 or 3).

Control Specific Argument(s):

	Default vector <ARRAY>

Return Value:

	Vector <ARRAY>

On Confirm and On Cancel

The On Confirm and On Cancel code blocks are both executed in the unscheduled environment when the dialog is closed.
The on confirm code is called only when the user presses the “OK” button, otherwise the on cancel code is called.

These code blocks are passed the following parameters:

	0: Dialog values <ARRAY>

	Values returned by the content controls, in the same order as the contents array.

	1: Arguments <ANY>

	Same as those passed to the function to when creating the dialog.

Public Events

This is a list of public CBA events executed by ZEN.

zen_curatorDisplayLoaded

Executed locally when the Zeus display is loaded.

Parameters:

	0: Zeus Display <DISPLAY>

zen_curatorDisplayUnloaded

Executed locally when the Zeus display is unloaded.

Parameters:

	0: Zeus Display <DISPLAY>

zen_remoteControlStarted

Executed locally when Zeus starts remote controlling a unit.

Parameters:

	0: Unit <OBJECT>

zen_editor_modeChanged

Executed locally when the Zeus display’s create trees mode is changed.
Event still fires if the selected mode is the same as the previous mode.

Parameters:

	0: Display <DISPLAY>

	1: Mode <NUMBER>

	2: Side <NUMBER>

zen_editor_sideChanged

Executed locally when the Zeus display’s create trees side is changed.
Event still fires if the selected side is the same as the previous side.

Parameters:

	0: Display <DISPLAY>

	1: Mode <NUMBER>

	2: Side <NUMBER>

Area Markers

Zeus Enhanced adds the ability to create and edit area markers through Zeus.

Creating

Area markers can be created by either using the context menu action or by placing the “Create Area Marker” module on the map.
The context menu action is only shown when the menu is opened on the map.

Editing

The properties of area markers can be changed by double clicking on the center icon of the marker.
This will open a menu which allows you to configure the marker’s size, rotation, shape, brush, color, and alpha.

Area markers can be moved by left clicking an dragging on the center icon.

Deleting

Area markers can be deleted by hovering over the center icon and pressing the DELETE key.

Attributes

Zeus Enhanced completely overhauls the Zeus attributes displays by rewriting vanilla attributes and implementing new ones for extended control.
In addition, attributes affect all applicable selected entities when it is logical and convenient to do, for example, when changing unit stances.

Here is a break down of the major attributes displays.

Infantry

	Name

	Skill

	Health/Damage

	Rank

	Stance

	Respawn Position

Vehicles

	Skill*

	Health/Damage

	Fuel

	Ammo

	Rank*

	Lock

	Engine

	Lights

	Plate Number

	Respawn Position

* Only for vehicles that are currently occupied.

Groups

	Group ID

	Skill

	Formation

	Behavior

	Combat Mode

	Speed Mode

	Stance

	Respawn Position

Waypoints

	Waypoint Type

	Timeout

	Formation

	Behavior

	Combat Mode

	Speed Mode

Markers

	Text

	Color

Compositions

Zeus Enhanced adds the ability to create custom compositions through Zeus.

Custom compositions exist under a special category in the empty compositions tree, named “Custom” and marked with an icon on the right-hand side.

Managing

Custom compositions can be created, edited, and deleted by pressing the respective buttons in the panel below the tree.

A new composition is created by selecting all of the objects that should be part of the composition and pressing the create button. A menu to input the composition’s category and name will be shown. Compositions are saved to the user’s Arma 3 profile.

An existing composition’s category and name can be edited by selecting it in the tree and pressing the edit button.

Lastly, compositions can be deleted by selecting the composition to delete in the tree and pressing the delete button. This requires an additional step to confirm the deletion.

Spawning

Custom compositions can be spawned by selecting the composition to spawn in the tree and proceeding with the normal Zeus placement procedure.

Context Actions

Zeus Enhanced adds many commonly used Zeus actions to its context menu framework.

Some actions require hovering over the relevant entity when opening the menu, while others work with all currently selected Zeus entities of that type. Furthermore, for quality of life with some actions, the hovered entity when the menu is opened is included in the selected entities.

Since it is not possible to overwrite the “place waypoint on right-click” behavior when AI units are selected in Zeus, the context menu can be opened using both the right mouse button and CBA keybind (default: V). Additionally, the menu can be disabled or set to keybind only mode using the relevant CBA settings.

Here is a list of these actions and brief descriptions on what they do (and any usage details).

Behavior

Applies the selected behavior to all currently selected groups.

Edit Inventory

Opens the inventory attributes display for the hovered object.
Sub-actions allow for copying and pasting the hovered objects’ inventory onto another.

Edit Loadout

Opens the preferred arsenal type (specified in CBA settings) on the hovered unit.
Sub-actions allow for copying and pasting the hovered units’ loadout onto another.

Edit Vehicle Appearance

Opens the Zeus garage on the hovered vehicle.
Sub-actions allow for copying and pasting the hovered vehicle’s customization onto another.

Editable Objects

Allows Zeus to add or remove editable objects within the selected radius.

Formation

Applies the selected formation to all currently selected groups.

Heal

Heals all selected units based on the on the mode (all, players, AI).

Remote Control

Starts the remote control process on the hovered unit or vehicle.

Speed

Applies the selected speed mode to all currently selected groups.

Stance

Applies the selected stance to all currently selected AI units.

Teleport Players

Teleports all currently selected players to the specified position.
The actions starts the 3D position selection process which confirms where to teleport the players.

Teleport Zeus

Teleports Zeus to the position where the context menu is opened (top left corner).

Vehicle Logistics

Allows Zeus to repair, rearm, and refuel all selected vehicles based on selected sub-action.

Vehicle Garage

Zeus Enhanced adds a Vehicle Garage made specifically for Zeus, allowing curators to customize vehicles to better detail their missions.

The garage can be opened on a vehicle through its attributes display or through the context menu action. On the left are the tab buttons, these toggle their associated lists of texture and component customization options available for the vehicle.

Apply To All

In order to easily apply the same customization to multiple vehicles, all vehicles intended to be modified can be selected and the garage can be opened on one of them. Pressing the “Apply To All” button will copy the current vehicle’s customization to all selected vehicles of the same type.

Shortcuts

	N : Cycle between vision modes.

	TAB : Cycle between tabs.

	BACKSPACE : Toggle interface visibility.

	LMB : Show hidden interface.

	RMB : Toggle interface (when not panning).

Modules List

Zeus Enhanced adds a lot of new modules to Zeus, as well as improving some existing ones.
Here is a list of these modules and brief descriptions of what they do (and any usage details).

Add Full Arsenal

Adds a full arsenal to the attached object. The type of arsenal added is based on the “Preferred Arsenal” setting.

Ambient Animation

Plays a ambient animation on the attached AI unit. Animation can be stopped using the same module.
In combat ready mode, the unit will snap out of the animation when a gun is fired near it.

Ambient Flyby

Creates an aircraft of the selected type that will fly over the module’s position from the selected direction.
The height, distance, and speed options allow for further control of the flyby.

Artillery Fire Mission

Makes the attached artillery unit fire the given number of rounds of the selected ammo at a grid position or target module with the given spread.
The “Units” option will make the selected number of additional nearby unit’s of the same type also fire.

Attach Effect

Attaches an effect (IR Strobe, Chem Light) to the attached group or units of a selected side.
Attached items can be removed using the “None” option.

Attach Flag

Attaches the selected flag to the attached vehicle or unit.
The flag can be removed using “None” option.

Attach To

Attaches the object the module is placed on to a selected object.
If the object is already attached, it will be detached.

Bind Variable

Sets the given variable name in missionNamespace to the attached object.
Selecting the public option will broadcast this value.

Change Height

Changes the height of the attached object by the given value.

Change Weather

Immediately changes the weather to the selected values for overcast, rain, lightning, rainbows, wind, gusts, and fog.

Chatter

Sends the entered message AI communication over chat.
When placed on a unit, sends the message from the unit over the selected channel.
When not placed on a unit, sends the message from the HQ element of the selected side.

Configure Doors

Opens the 3D door configuration UI on the attached or nearest building.

Convoy Parameters

Sets the convoy parameters (separation, speed, stay on road) of the attached land vehicle.
This should be used on all vehicles in a convoy which are ideally in the same group.

Create Area Marker

Creates an area marker at the module’s position.
This module must be placed on the map.

Create/Edit Intel

Creates an object of the selected type and adds action to collect its intel.
The intel is added as a diary record with the given title and text (under the “Intel” subject).
Additionally, the module can be attached to an existing object to add (or edit) an intel action.

Create IED

Makes the attached object act as an IED that is activated by the selected side within the selected radius.
The “Extreme” explosion size option creates many explosions all around the IED instead of a single explosion.
IEDs that are able to be jammed will not be activated by vehicles equipped with an ECM.

Create LZ

Creates an LZ module with the given name which can be used in conjunction with other modules (such as the “Spawn Reinforcements” module) to specify a position.
The module also acts as a helipad, which helps in directing AI helicopters to land at a specific position.

Create Minefield

Creates a minefield of the given area centered at the module’s position filled with the selected mine types.
The mine density option affects the spacing of the mines from: Very Low = 30 m to Very High = 10 m.

!> Caution should be used when using a large area with a high mine density.

Create RP

Creates an RP module with the given name which can be used in conjunction with other modules (such as the “Spawn Reinforcements” module) to specify a position.

Create Target

Creates a target module with the given name which can be used in conjunction with other modules (such as the “Artillery Fire Mission” module) to specify a position.
Optionally, a laser target for the selected side can be attached to the module.

Create Teleporter

Creates a teleport location at the attached object or, if not attached, at a newly created flag pole.
Players can use the “Teleport” action on any teleporter objects to teleport between them.
When used on a vehicle, players will first be teleported into an empty seat if possible.

Custom Fire

Creates a custom fire effect based on the selected fire color, fire damage, effect size, and particle density, lifetime, speed, size, and orientation.

Damage Buildings

Sets the damaged state of the nearest building to the module or all buildings within the given radius, depending on the selected mode.
In nearest mode, only damage states that the nearest building supports are selectable.
In radius mode, the module will default to undamaged if a building does not support the selected state.

!> Enabling destruction effects when using the module on a large amount of buildings can create a lot of lag.

Earthquake

Creates an earthquake of the selected intensity and radius around the module.
Optionally, the earthquake can damage a random amount of buildings (increasing with intensity) within the radius.

Equip With ECM

Equips the attached vehicle with an ECM which prevents the detonation of jammable IEDs.

Execute Code

Executes the entered code on the selected machine(s).
When used in JIP mode, the module can be deleted to stop execution on new JIP clients.

Export Mission SQF

Outputs SQF code that can be executed to restore the current mission.

Fly Height

Sets the flying altitude of the attached aircraft relative to the ground.

Functions Viewer

Opens the functions viewer.

Garrison Group

Garrisons units from the attached group in nearby buildings.

Global Hint

Sends the entered message as a global hint.
The message preview shows the message with all of the formatting applied.

Heal

Heals the attached unit. Works with BI’s scripted revive system and ACE medical.

Hide Zeus

Hides or unhides the Zeus player and bird.

Light Source

Creates a light source of the selected color, range, and attenuation.
The light source can be edited by double clicking the module it is attached to.

Make Invincible

Makes the attached object and optionally its crew invincible.
Invincibility can be removed using this module as well.

Patrol Area

Makes the attached group patrol an area of the given radius with the selected behavior.

Promote To Zeus

Assigns the attached player as a Zeus.

Remove Arsenal

Removes any existing arsenal from the attached object. The type of arsenal removed is based on the “Preferred Arsenal” setting.

Set Date

Sets the current date (and time of day) in the mission.

Show In Config

Opens the config viewer. If placed on an object, the config viewer will be opened to that object’s config entry.

Side Relations

Modifies the relationship between two sides (BLUFOR, OPFOR, Independent).
Optionally, the relationship change can be broadcast over the respective side’s radios.

Sit On Chair

Makes the attached unit sit on a chair of the selected type.
The unit will stand up if it is already sitting.

Smoke Pillar

Creates a persistent smoke pillar of the selected type.

Spawn Reinforcements

Spawns a reinforcement group (at the module’s position) composed of the selected units which will be transported to an LZ by the selected vehicle.
Optionally, the group can be made to move to an RP after arriving at the LZ.

The vehicle can be directed to return to its spawn position and despawn or stay at the LZ and provide support.
Air vehicles have additional insertion methods available such as land, paradrop, or fastrope.

Suicide Bomber

Makes the attached unit act as a suicide bomber that is activated by the selected side within the selected radius.
When the “Dead Man’s Switch” option is enabled, the unit will detonate if they die or go unconscious.

When “Auto Seek” is enabled, the unit will actively try to find and move towards nearby units of the activation side.
The range of Auto Seek is based on the unit’s spot distance skill with a minimum of 100 meters.

Teleport Players

Teleports players from the selected side, group(s), or individual player(s) to the module’s position.
If the module is placed on a vehicle, players will be teleported into the vehicle.

Toggle Flashlights

Toggles the flashlights of all AI units of the given side (or group, when placed on a unit) to the selected state.
The “Add Gear” option, will add a random, compatible flashlight to unit’s weapon if possible and the weapon does not already have one.

Toggle IR Lasers

Toggles the IR lasers of all AI units of the given side (or group, when placed on a unit) to the selected state.
The “Add Gear” option, will add a random, compatible IR laser to unit’s weapon if possible and the weapon does not already have one.

Toggle Lamps

Sets the state (on/off) of all building light sources such as street lamps within the specified radius.

Toggle Simulation

Toggles the simulation of the attached object.

Toggle Visibility

Toggles the visibility of the attached object.

Un-Garrison Group

Un-garrisons units from the attached group.

Update Editable Objects

Adds or removes editable objects of the selected types from the local or all curators.
The module can be used in “All Mission Objects” mode to avoid having to place it near objects and input a radius.

USS Freedom

Spawns the USS Freedom aircraft carrier.

USS Liberty

Spawns the USS Liberty destroyer.

Vehicle Turret Optics

Modifies the attached vehicle’s NVG and TI equipment availability.

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

